Horizontal vs. Vertical Approach to Infection Prevention: Practical Strategies to Reduce HAIs

Kathleen M. Vollman MSN, RN, CCNS, FCCM, FAAN
Clinical Nurse Specialist / Educator / Consultant
ADVANCING NURSING
kvollman@comcast.net
Northville Michigan
www.vollman.com

© ADVANCING NURSING LLC 2016

Disclosures

- Hill-Rom Speaker Bureau & Consultant
- Eloquest Healthcare Speaker Bureau & Consultant
- Sage Products Speaker Bureau & Consultant
Why HAI's?
Protecting Patients From Harm

Estimates: 183 Hospitals in 10 States

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HAI:</td>
<td>722,000/year</td>
</tr>
<tr>
<td>HAI-related deaths:</td>
<td>75,000/year</td>
</tr>
<tr>
<td>Hospitalized patients develop infection:</td>
<td>1 out of 25 (4%)</td>
</tr>
<tr>
<td>Death due to sepsis/septic shock:</td>
<td>700/day</td>
</tr>
<tr>
<td>Money spent:</td>
<td>$45 billion/year</td>
</tr>
<tr>
<td>Increase risk of readmission:</td>
<td>27 days vs. 59 days</td>
</tr>
</tbody>
</table>

HAI Progress Report

- 50% decrease in CLABSI between 2008 and 2014
- No change in overall CAUTI between 2009 and 2014
- Progress in non-ICU settings between 2009 and 2014, in all settings between 2013 and 2014, and even more progress in all settings toward the end of 2014
- 13% reduction in MRSA bactermia's
- 17% decrease in SSI related to the 10 select procedures tracked in previous reports. Between 2008 and 2014:
 - 17% decrease in abdominal hysterectomy SSI
 - 2% decrease in colon surgery SSI

Health Care Associated Infection Data

<table>
<thead>
<tr>
<th>Measurement</th>
<th>NHSN 2013 3815 Acute Care Hospitals</th>
<th>INICC 43 Countries 2007-2012</th>
<th>Single Center Private Hospital South Africa from 2012-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAP/per 1000 vent days</td>
<td>Range of pooled means 0.2 (Ped CVICU) -4.4 (Burn ICU)</td>
<td>Range of pooled means 7.9 (Peds) – 29.6 (Trauma)</td>
<td>From 11.29 to 6.53 per 1000 vent day</td>
</tr>
<tr>
<td>CLA-BSI/per 1000 cath days</td>
<td>Range of pooled means 0.0 (Prenatal)-2.9 (Burn ICU)</td>
<td>Range of pooled means 1.02 (Surg Cardio)- 6.38 (Neuro)</td>
<td>From 2.15 to 0.0 per 1000 cath days</td>
</tr>
<tr>
<td>CA-UTI/per 1000 cath days</td>
<td>Range of pooled means 0.0 (Peds Surgical)-4.8 (Burns) Stepdown 0.8 (Peds) – 1.7 (Adults)</td>
<td>Range of pooled means 1.29 (Surg Cardio) – 15.99 (Neuro)</td>
<td>Range from 0 to 3.73 per 1000 cath days</td>
</tr>
</tbody>
</table>

Economic Burden of HAIs: Build the Business Case

- Generated point estimates for attributable cost & LOS
- 5 Major Infections = 9.8 billion
 - SSI, CLABSI, VAP/VAE, CAUTI, C-Diff
 - SSI (33.7%)
 - VAP (31.6%)
 - CLABSI (18.9%)
 - C-Diff (15.4%)
 - CAUTI (<1%)

Per Case Basis

<table>
<thead>
<tr>
<th>SSI</th>
<th>CLABSI</th>
<th>VAP</th>
<th>CAUTI</th>
<th>C-DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20,785</td>
<td>$45,814</td>
<td>$40,144</td>
<td>$896</td>
<td>$11,285</td>
</tr>
</tbody>
</table>

Building Resiliency Into Interventions

Forcing Functions and Constraints
- Automation and Computerization
- Standardization and Protocols
- Checklist and Independent Check Systems
- Rules and Policies
- Education and Information
- Vague Warning – “Be More Careful!”

Strongest

Weakest

Common Routes of Transmission

HAI in the ICU was the patients’ endogenous flora (40%-60%); cross-infection via the hands of health care personnel (HCP; 20%-40%); antibiotic-driven changes in flora (20%-25%); and other (including contamination of the environment; 20%). Weinstein RA. Ann J Med 1991;91(Suppl):179S-184S.
Vertical vs. Horizontal

- **Vertical approach** refers to a narrow-based program focusing on a single pathogen (selective of the specific MDRO)
 - AST to identify carriers
 - Implementation of measures aimed at preventing transmission from carriers to other patients
 - Isolation
 - Hand hygiene

- **Horizontal approach to infection prevention and control measures** refers to broad-based approaches attempting reduction of all infections due to all pathogens
 - No screening
 - Universal nasal coverage
 - CHG bathing
 - No isolation
 - Limit lines/tubes
 - Hand hygiene

Reducing MDRO’s

- **Implement a MRSA monitoring program** (III)
 - IP strategy application
 - Tracking hospital onset
 - Alert system for + new admit or readmission

- **Hand hygiene** (II)

- **Contact precautions for MRSA colonized & MRSA infected patients** (II)
 - Isolation demonstrated hypo & hyper glycemic, MDRO-VAP, errors with anticoagulant meds, anxiety and greater patient dissatisfaction.

- **Decontamination of environment and equipment** (II)

- **Decontamination of the patient-universal decolonization**

- **Practice the device bundles** (VAP, BSI, UTI)

www.ihi.org
Active Surveillance-When

- Prior to surgical procedures to determine carriage or active infection
- Use AST - Active surveillance testing
- Based on locations or populations of patients with unacceptably high rates of MDRO despite basics MDRO transmission prevention strategies in place
- AST of healthcare workers an unresolved issue

Reducing MDRO’s

- Implement a MRSA monitoring program (III)
 - IP strategy application
 - Tracking hospital onset
 - Alert system for + new admit or readmission
- Hand hygiene (II)
- Contact precautions for MRSA colonized & MRSA infected patients (II)
 - Isolation demonstrated hypo & hyper glycemic, MDRO-VAP, errors with anticoagulant meds, anxiety and greater patient dissatisfaction.
- Decontamination of environment and equipment (II)
- Decontamination of the patient-universal decolonization
- Practice the device bundles (VAP, BSI, UTI)

www.ihi.org
Hand Hygiene is the Single Most Important Factor in Preventing the Spread of Infection

Adherence remains low 30-60%
Guidelines for Hand Hygiene in Health Care Settings

- If hands are not visibly soiled, use an alcohol-based hand rub 62% for routinely decontaminating hands in all other clinical situations (20-30 seconds) (II)
- When hands visibly soiled or exposure to potential spore forming organisms, wash with either a non-antimicrobial or antimicrobial soap & water (40-60 seconds) (II)
- Do not use Triclosan containing soaps
- Decontaminate hands after removing gloves
- Provide HCW with hand lotions & creams to minimize occurrence of irritant contact dermatitis
- Use multidimensional strategies to improve hand hygiene practice (IA)
- Do not wear artificial fingernails or extenders

CDC. Hand Hygiene Guidelines: MMWR 2002; 51(No. RR-16):[1-45]
WHO Hand Hygiene Guidelines 2009

Reasons for Non-Compliance

- Inconvenient location of sinks and dispenser
- Lack of understanding of correct technique
- Understaffing and overcrowding
- Cultural issues
- Poor access
- Irritant contact dermatitis associated with frequent exposure
- Lack of institutional commitment to good hand hygiene

WHO Hand Hygiene Guidelines 2009
Correct use can reduce colony forming units by 90%, incorrect use only 60%. 1-3mL correct amount per HH episode

When to Wash

Similar rates of HH compliance

Sankesula VCK, et al AJIC, 2015;43:16019
Key Components to Multimodal Strategy to Improve Adherence (II)

- Education & motivation & strong commitment to improve hand hygiene by frontline workers & leadership (Institutional safety climate)
- Engage staff in the process
- Simply & standardize
- Alcohol-based hand rub as primary method for hand hygiene….right product
- C-diff-wear gloves & gown/both methods of hand hygiene are not real effective
- Verified by competency, monitored compliance and feedback/weekly initially (II)

WHO Guidelines 2009
Pittet D. Infect Control & Hosp Epidemi, 2008;29:957-959
Sax, H., et. al. Infection Control and Hospital Epidemiology 2009, 28, 1267-1274
Erasmus, V. et. Infection Control and Hospital Epidemiology;2009 30(5), 415-419

Hand Hygiene Measurement Methods

- Direct Observation
- Product Usage/Volume
- Automation monitoring can improve compliance
 - Electronic versus direct observation accurate in measuring compliance

Morgan DJ, et al. AJIC, 2012;40:955
Haas and Larson Journal of Hospital Infection 2007;66:6-14

Increase use of alcohol hand rub (measure by volume use) correlated significantly (p=0.014) with improvement in MRSA rates
Reducing MDRO’s

- Implement a MRSA monitoring program (III)
 - IP strategy application
 - Tracking hospital onset
 - Alert system for + new admit or readmission
- Hand hygiene (II)
- Contact precautions for MRSA colonized & MRSA infected patients (II)
 - Isolation demonstrated hypo & hyper glycemic, MDRO-VAP, errors with anticoagulant meds, anxiety and greater patient dissatisfaction.
- Decontamination of environment and equipment (II)
- Decontamination of the patient-universal decolonization
- Practice the device bundles (VAP, BSI, UTI)

www.ihi.org

Organizations Journey of Discontinuing Contact Precautions for MRSA & VRE

- 865-bed, safety-net, academic medical center.
- Quasi-experimental, before-and-after study (30 months)
- Discontinuing CPs for MRSA or VRE colonized/infected patients
- During intervention period: hand hygiene, daily chlorhexidine bathing of all inpatients (except infants) & bare below the elbows protocol for inpatient care.

Substantial scientific evidence has accumulated that contamination of environmental surfaces in hospital rooms plays an important role in the transmission of several key health care–associated pathogens.

The Story

- The pathogen is capable of surviving on surfaces & equipment for a prolonged time.
- Contact with room surfaces or equipment by HCP frequently leads to contamination of hands or gloves.
- The frequency with which room surfaces are contaminated correlates with the frequency of hand or glove contamination of HCP.
- The patient admitted to a room previously occupied by a patient colonized or infected with a pathogen has an increased likelihood of developing colonization or infection with that pathogen.
- Improved terminal cleaning of rooms leads to a decreased rate of individual patient colonization and infection & facility-wide rate of colonization and infection.
Application of Recommendations for Environmental Cleaning

- Resources to ensure effective cleaning and decontamination
 - Use of a check list
 - Clean equipment that is transported from room to room
 - Dedicated equipment in isolation rooms
 - Reduce load—adequate time to clean
 - Education of healthcare workers and support staff
- Daily disinfection of non-critical surfaces vs. just visibly soiled
- Feedback method using removal of intentional applied marks visible only under UV light
- Wipes that keep the surface wet for 1-2 minutes
- Reusable cloths changed with each room clean and use 3 per room

Weber DJ, AJIC, 2016;44:77-84

Improving Environmental Hygiene In 27 ICUs Decreased MDRO Transmission

- 27 acute care hospitals (25 beds to 709 beds)
- Fluorescent targeting method used to objectively evaluate the thoroughness of terminal room cleaning before and after a structured educational, procedural and administrative interventions
- Systematic covert monitoring was performed

Results:
- 3532 environmental surfaces were assessed after terminal cleaning in 260 ICU unit rooms
- 49.5% of services cleaned it baseline
- Post-intervention with multiple cycles of objective performance feedback resulted in 82% of environmental services cleaned (p < .0001)

No Touch Cleaning

- Use of a no touch method leads to a decreased rate of infection in patients subsequently admitted to a room where the prior occupant was colonized or infected.
- Use of a no touch method leads to a decreased rate of facility-wide colonization and infection.
- Hydrogen peroxide vapor & aerosolized significantly reduce MDRO load in terminal cleaning. (vapor: 1.5 to 2.5 hrs, aerosolized: 2-3 hrs)
 - Aerosolized not well studied versus vapor
 - Contaminated surfaces reduced to 0% to <5%
- Ultraviolet-C to kill pathogens.
 - 10-45 minutes of use, C. difficile spores
 - 10-25 minutes for non-spore forming bacteria
 - Contaminated surfaces reduced <1% to <11%

Reducing the Load in the Environment: Additional Factors

- Hospital curtains potential source of transmission\(^1\)
 - Novel curtains increase time to first contamination (7x longer)\(^2\)
- Daily cleaning of high touch surfaces\(^3\)
- Disinfecting surfaces (copper/silver coating)\(^4\)
- ECG disposable or reusable?\(^5\)
 - Cluster-randomized controlled design
 - Match ICU’s randomized to get disposable or reusable ECG
 - Measured infection rates

\(^{5}\) Albert NM, et al. Amer J of Critical Care, 2014;23:466-468
Reducing MDRO's

- Implement a MRSA monitoring program (III)
 - IP strategy application
 - Tracking hospital onset
 - Alert system for + new admit or readmission
- Hand hygiene (II)
- Contact precautions for MRSA colonized & MRSA infected patients (II)
 - Isolation demonstrated hypo & hyper glycemic, MDRO-VAP, errors with anticoagulant meds, anxiety and greater patient dissatisfaction.
- Decontamination of environment and equipment (II)
- Decontamination of the patient-universal decolonization
- Practice the device bundles (VAP, BSI, UTI)

www.ihi.org

Reducing Bacterial Load on the Patient: A Horizontal Strategy

Evidence Based Bathing Practices
Patients At Risk

Multi-Drug Resistant Organisms
- Immunodeficiencies
- Breaks in skin integrity related to invasive devices
- Co-morbidities
- Hand transmission
- Equipment contamination/Hospital environment

Damaging the Natural Barriers to Infection…the Skin
- Bathing techniques
- Soaps
- Wash cloths

Bonten MJM. Am J Respir Crit Care Med. 2011;184:991-993

Optimal Hygiene

- pH balanced (4-6.8)
 - Stable pH discourages colonization of bacteria & ↓ risk of infection
 - Bar soaps may harbor pathogenic bacteria
- Excessive washing/use of soap compromises the water holding capacity of the skin
- Non-drying, lotion applied
- Multiple steps can lead to large process variation

Voegel D. J WOCN, 2008;35(1):84-90
Traditional Bathing

Why are there so many bugs in here?

Soap and water basin bath was an independent predictor for the development of a CLABSI

Bath Basins
Potential Source of Infection

Large multi-center study evaluates presence of multi-drug resistant organisms

- Contaminated: 686 basins/88 hospitals (62%)
- Gram negative bacilli: 495 basins/86 hospitals (45%)
- Colonized w/ VRE: 385 basins/80 hospitals (35%)
- MRSA: 36 basins/28 hospitals (3%)

Mechanisms of Contamination

- Skin flora
- Multiple-use basins
 - Incontinence cleansing
 - Emesis
 - Product storage
- Bacterial biofilm from tap water

Waterborne Infection

Hospital Tap Water
- Bacterial biofilm
- Most overlooked source for pathogens
- 29 studies demonstrate an association with HAIs and outbreaks
- Transmission:
 - Drinking
 - Bathing
 - Rinsing items
 - Contaminated environmental surfaces
- Immunocompromised patients at greatest risk

Bathing with CHG Basinless Cloths

- Prospective sequential group single arm clinical trial
- 1787 patients bathed
 - Period 1: soap & water
 - Period 2: CHG basinless cloth bath*
 - Period 3: non-medicated basinless cloth bath

Veron MO et al. Archives Internal Med 2006;166:306-312

26 colonization's with VRE per 1000 patients days vs. 9 colonization's per 1000 patient days with CHG bath

Veron MO et al. Archives Internal Med 2006;166:306-312
Impact on VRE with 2% CHG Cloth Bathing*

Veron MO et al. Archives Internal Med 2006;166:306-312

The Efficacy of Daily Bathing with Chlorhexidine for Reducing Healthcare-Associated bloodstream Infections: A meta-analysis

John C. O’Hero, MD1; Gennaro L. M. Silva, MD1; L. Silvio Munoz-Price, MD1; Nasis Sferlaz, MD, PhD2

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Events</th>
<th>Control Total</th>
<th>Total</th>
<th>Odds Ratio (95% CI)</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2.1 CHG Bathing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone et al., 2007</td>
<td>2</td>
<td>300</td>
<td>302</td>
<td>0.16 (0.04, 0.70)</td>
<td></td>
</tr>
<tr>
<td>Cerra et al., 2005</td>
<td>6</td>
<td>1991</td>
<td>1997</td>
<td>0.64 (0.42, 1.0)</td>
<td></td>
</tr>
<tr>
<td>Clements et al., 2009</td>
<td>14</td>
<td>15472</td>
<td>15486</td>
<td>0.34 (0.18, 0.62)</td>
<td></td>
</tr>
<tr>
<td>Gudal et al., 2007</td>
<td>12156</td>
<td>2604</td>
<td>28259</td>
<td>0.50 (0.24, 1.0)</td>
<td></td>
</tr>
<tr>
<td>Munoz-Price et al., 2000</td>
<td>79</td>
<td>2632</td>
<td>34092</td>
<td>0.40 (0.25, 0.64)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>93116</td>
<td>32236</td>
<td>125352</td>
<td>0.47 (0.41, 0.54)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>212</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Heterogeneity: Tau² = 0.12; CHI² = 13.07; df = 6 (p = 0.003); I² = 64%
Test for overall effect: Z = 3.33 (p = 0.0004) |

L2.2 CHG Impregnated Cloths

Brennand et al., 2007 | 1716 | 13710 | 15426 | 0.73 (0.56, 0.95) | |
Dixon and Conre, 2010	8184	37100	40914	0.53 (0.41, 0.69)	
Evans et al., 2010	45956	15504	17156	0.26 (0.19, 0.35)	
Herder and Engberg, 2009	1202	13333	14535	0.38 (0.26, 0.61)	
Montesinos et al., 2010	21364	573200	59456	0.43 (0.27, 0.68)	
Popovich et al., 2000	27316	87708	115024	0.54 (0.43, 0.68)	
Subtotal (95% CI)	394156	137559	176995	0.61 (0.52, 0.70)	
Total events	175	173			
Heterogeneity: Tau² = 0.09; CHI² = 12.03; df = 6 (p = 0.005); I² = 53%					
Test for overall effect: Z = 7.79 (p = 0.0000002) |

Total (95% CI) 67775 | 69637 | 100.0% | 0.44 (0.33, 0.59) | |

*2% CHG cloth for bathing is consider an off label use of the product.
Infect Control Hosp Epidemiol 2012;33(3):257-267
2% CHG Cloth Bathing: SCRUB Trial Critically Ill Children

- Cluster-randomized 2-period cross over trial
- >2 months of age
- 6 month
- 4947 admissions
 - SOC: basin less bathing or soap & H₂O
 - CHG: 2% CHG cloth
- Demographics similar
- Outcomes:
 - Primary bacteremia-36% reduction
 - 12 pts withdrew because of skin irritations (1%)
 - CHG-associated skin reactions-1-2 per 1000 pt days

The Evidence: Impact of 2% CHG Cloth Baths*
Evaluate effect of daily bathing with CHG on acquisition of MDRO’s and incidence of CLABSI

9ICU’s & Bone Marrow Transplant unit
Randomly assigned 7727 patient:
a. No-rinse, 2% CHG impregnated washcloths*
b. Non-antimicrobial, no-rinse bath cloths

Results of 2% CHG bathing
Impact of 2% CHG Cloth Baths*
Study to determine the best method for reducing spread of MRSA & MDROs

3 protocols tested:

a) Swab for MRSA on admission to ICU
 - Isolate if positive
b) Swab for MRSA on admission to ICU
 - Isolate if positive
 - Nasal mucopiricin x 5 days
 - 2% CHG cloth* bathing for entire ICU stay
c) No swab
 - Nasal mucopiricin x 5 days
 - 2% CHG bath* for entire ICU stay

Results: No Swab Group
Universal Decolonization Demonstrated

- 37% reduction
- 44% reduction

*2% CHG cloth for bathing is considered an off-label use of the product

CHG Bathing: Meta-Analysis

- Meta-analysis performed using Cochrane Collaboration methodology
- 18 studies included
- Examine risk of acquiring HAI: CLA-BSI, MRSA, VRE
- Longer duration & nasal antibiotic showed even lower risk MRSA

*2% CHG cloth for bathing is considered an off-label use of the product

CHG Bathing: Meta-Analysis

- Meta-analysis performed using Cochrane Collaboration methodology
- 18 studies included
- Examine risk of acquiring HAI: CLABSI, MRSA, VRE
- Longer duration & nasal antibiotic showed even lower risk MRSA

*2% CHG cloth for bathing is considered an off-label use of the product.

Impact of 2% CHG Cloth Bath*: Follow Up Analysis On Universal Decolonization on Bacteriuria & Candiduria

3 protocols tested:

a) Swab for MRSA on admission to ICU
 - Isolate if positive

b) Swab for MRSA on admission to ICU
 - Isolate if positive
 - Nasal mucopiricin x 5 days
 - 2% CHG cloth* bathing for entire ICU stay

c) No swab
 - Nasal mucopiricin x 5 days
 - 2% CHG cloth bath* for entire ICU stay

*2% CHG cloth for bathing is considered an off-label use of the product.
Additional Benefits

• Demonstrates lower rates of blood culture contamination with universal decolonization with CHG cloth bathing* (Septimus EJ, et al. Infect Control Hosp Epidemiol, 2014;35:S17-22)

• Meta-analysis demonstrating a positive effect between CHG bathing and reduce risk of VAP (Chen W, et al. J Thorac Dis 2015;7(4):746-753)

Some challenges with the data

*2% CHG cloth for bathing is consider an off label use of the product.

CHG Bathing Process

Monitor for compliance by assessing amount of CHG on the skin (Assay).

Prevent sub-optimal concentrations

Cleansing of Patients with Indwelling Catheter

- Indwelling catheter care should occur with the daily bath (basinless bathing)*, as a separate procedure using clean technique
- There is no evidence to support 2x a day indwelling catheter care
- If a large liquid stool occurs, bathe the patient with basin less bathing
- Use separate cloths to clean front to back in the perineal area and 6 inches of the catheter**
- Apply barrier cloth to area of skin requiring protection

CLA-BSI / CAUTI Prevention

Key Issues
CUSP & CLABSI Interventions

Technical

<table>
<thead>
<tr>
<th>CLABSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insertion</td>
</tr>
<tr>
<td>2. Maintenance</td>
</tr>
<tr>
<td>a. Assessment & Site Care</td>
</tr>
<tr>
<td>b. Tubing, Injection Ports, Catheter Entry</td>
</tr>
<tr>
<td>3. Additional interventions</td>
</tr>
<tr>
<td>a. CHG bathing</td>
</tr>
<tr>
<td>b. CHG dressings</td>
</tr>
<tr>
<td>c. Disinfection caps</td>
</tr>
</tbody>
</table>

Adaptive/Cultural

<table>
<thead>
<tr>
<th>CUSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Educate on the Science of Safety</td>
</tr>
<tr>
<td>2. Identify Defects (Staff Safety Assessment)</td>
</tr>
<tr>
<td>3. Senior Executive Partnership</td>
</tr>
<tr>
<td>4. Learn from Defects</td>
</tr>
<tr>
<td>5. Implement Teamwork & Communication Tools</td>
</tr>
</tbody>
</table>

Insertion Prevention Bundle

Blood Stream Infection (BSI)

- Remove/Avoid unnecessary lines (II)
- Hand hygiene (II)
- Maximal barrier (II)
- Chlorhexadine for skin prep (I)
- Avoid femoral lines (I)

Education & Culture of Safety

Maintenance Bundle

- Dressing Care
- Accessing the line
- Administration set changes
- Assessing each day if line is necessary

 ➢ Additional strategies:
 - CHG Baths
 - CHG Dressings
 - Disinfection caps
 - Antimicrobial locks
 - Antibiotic impregnated catheters

Dressing Care

- Use a transparent or gauze dressing to cover site (IA)
- Change transparent dressing and perform site care with a CHG based antiseptic every 7 days (IB) or more frequent if the dressing is soiled, loose, or damp; (IB)
- Change gauze dressings every 2 days or more frequent if the dressing is loose, soiled or damp (II)
- Use a chlorhexidine-impregnated dressing for temporary short-term catheters in patients older than 2 months of age if the CLABSI rate is not ↓ despite EBP (1B)

SHEA and IDSA, Infection Control and Hospital Epidemiology. July 2014
Prevention of Catheter Infection: MMWR 2002;51 (No. RR-10) [1-29]
Impact of Dressing Disruption

- Dressing cost inversely related to rate of disruption
- Number of dressing disruption \(\rightarrow \) risk for colonization of the skin around the catheter at removal \((p<.0001) \)
- Risk of infection increased threefold after 2nd dressing disruption
- Risk of infection increase by 10 fold if the final dressing was disrupted independently of other risk factors of infection

Timsit JF, et al Crit Care Med; 2012;1707-1714

Care After Insertion

- Scrubbing the access port with an appropriate antiseptic (chlorhexidine, povidone iodine, an iodophor, or 70% alcohol) and accessing the port only with sterile devices.
- 3 sec, 10 sec & 15 sec scrub showed no difference in reducing bacterial load (Simmons S, et al. Crit Care Nurs Q, 2011;34:31-35)
- Replace administration sets not used for blood, blood products or lipids at intervals not longer than 96 hours
- Replace tubing used to administer blood, blood products, or fat emulsions within 24 hours of initiating the infusion.
- When needleless system used, consider a split septum valve versus a mechanical valve.
- Change the needleless components at least as frequently as the administration set.
- Use a 2% chlorhexidine wash for daily skin cleansing to reduce CRBSI
Continuous Passive Disinfection of Catheter Hubs
Prevents Contamination and Bloodstream Infection

- 3-phased, multi-facility, quasi-experimental study
- 3 periods
 - Period 1 (P1) baseline: standard disinfection of hub before accessing
 - Period 2 (P2): passive disinfection cap on all central lines
 - Period 3 (P3): standard disinfection of hub before accessing
- Assessed intraluminal contamination in PICC patients only, with PICC lines in > 5 days
- CAUTI used as a concurrent control

Results:
- Contamination:
 - P1: 12.7%
 - P2: 5.5% (p=0.002)
 - P3: 12% (p=0.88)
- CLABSI rate
 - P1: 1.43/1000 catheter days
 - P2: 0.69/1000 catheter days (p= 0.04)
 - P3: 1.31/1000 catheter days
- CAUTI rates
 - P1: 1.42 /1000 urinary catheter days
 - P2: 1.41/1000 urinary catheter days
 - P3: 1.04/1000 urinary catheter days (p= 0.03)

Use of a Cap resulted in a 40% reduction in CLABSI's

*P=0.05

Wright, M et al Am J of Infect Control, 2013;41:33-8
CUSP & CAUTI Interventions

Adaptive /Cultural

1. Educate on the Science of Safety
2. Identify Defects (Staff Safety Assessment)
3. Senior Executive Partnership
4. Learn from Defects
5. Implement Teamwork & Communication Tools

Technical

1. Insertion
 - Limiting use
 - Using aseptic technique for site prep, equip & supplies
2. Maintenance
 - Securing the catheter for unobstructed flow
 - Maintaining the sterility of the urine collection system
 - Replacing the urine collection system when required
 - Collecting urine samples

Isn’t this a patient safety issue, not just CAUTI?
Pathogenesis of CAUTI

- Source: colonic or perineal flora on hands of personnel
- Microbes enter the bladder via extraluminal (around the external surface) (proportion = 2/3) or intraluminal (inside the catheter) (1/3)
- Daily risk of bacteriuria with catheterization is 3% to 10%; by day 30 = 100%

Disrupting the Lifecycle of the Urinary Catheter

1. Preventing Unnecessary and Improper Placement
2. Maintaining Awareness & Proper Care of Catheters
3. Prompting Catheter Removal
4. Preventing Catheter Replacement

(Meldings. Clin Infect Dis 2011)
CDC, SHEA, IDSA and NHS: Indications for Placement

- Perioperative use for selected surgical procedures
- Urine output in critically ill patients
- Management of acute urinary retention and urinary obstruction
- Assistance in pressure ulcer healing for incontinent patients
- At a patient request to improve comfort (SHEA) or for comfort during end of life care (CDC)

Core Recommendations

- Insert catheters only for appropriate indications (1B)
- Leave catheters in only as long as needed (1B)
- Ensure that only properly trained persons insert and maintain catheters (1B)
- Insert catheters using aseptic technique and sterile equipment (acute care settings) (1C)
- Consider use of alternatives (II)
- Maintain a close drainage system (1B)
- Secure the system (1B)
- Maintain unobstructed urine flow (1B)
- Key the collecting bag below the level of the bladder at all times (1B)

Bugs Be Gone!!!!

Putting it Together

Horizontal Approach: It Works

• Retrospective, observational study in the surgical ICU of a tertiary care medical center in Boston, MA, from 2005 to 2012
• N=6,697 patients in the surgical ICU

↓21% per year
Since 2008
Zero MRSA infections
WHEN WOULD NOW BE A GOOD TIME TO DO THIS?

It is not enough to do your best; you must know what to do, and THEN do your best.
~ W. Edwards Deming

Forbid yourself to be deterred by poor odds just because your mind has calculated that the opposition is too great. If it were easy, everyone would do it.
Contact at
kvollman@comcast.net